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We present a kinetic Monte Carlo method for simulating chemical transformations specified by reaction
rules, which can be viewed as generators of chemical reactions, or equivalently, definitions of reaction classes.
A rule identifies the molecular components involved in a transformation, how these components change,
conditions that affect whether a transformation occurs, and a rate law. The computational cost of the method,
unlike conventional simulation approaches, is independent of the number of possible reactions, which need not
be specified in advance or explicitly generated in a simulation. To demonstrate the method, we apply it to study
the kinetics of multivalent ligand-receptor interactions. We expect the method will be useful for studying
cellular signaling systems and other physical systems involving aggregation phenomena.

DOI: 10.1103/PhysRevE.78.031910 PACS number�s�: 82.39.Rt, 02.70.Tt, 05.10.Ln, 87.18.�h

Proteins in cellular regulatory systems, because of their
multicomponent composition, can interact in a combinatorial
number of ways to generate a myriad of protein complexes,
which are highly dynamic �1�. This feature of protein-protein
interactions has been called combinatorial complexity, and it
is recognized as a major barrier to understanding cell biology
�1–4�. The problem of combinatorial complexity is alleviated
by using a rule-based approach to model protein-protein in-
teractions �5�. In this approach, proteins and protein com-
plexes are represented as structured objects �graphs� and
protein-protein interactions are represented as �graph-
rewriting� rules that operate on these objects to modify their
properties, consistent with transformations mediated by the
interactions being represented. Rules can serve as definitions
of individual reactions or entire reaction classes, and they
can be used as generators of reactions �6,7�. The assumption
underlying this modeling approach, which is consistent with
the modularity of regulatory proteins �8�, is that interactions
are governed, at least to a first approximation, by local con-
text that can be captured in simple rules �e.g., by the avail-
ability of binding sites on two binding partners�. Rules can,
in principle, be used to generate reaction networks that ac-
count comprehensively for the consequences of specified
protein-protein interactions. However, the size of a rule-
derived network can severely challenge conventional meth-
ods for simulating reaction kinetics �5�. For example, the rule
set formulated by Danos et al. �9� implies more than 1023

chemical species and an even greater number of reactions.
It is impractical to simulate the kinetics of such a rule-

derived network with the methods that are most commonly
used in modeling studies of cellular regulatory systems, such
as Gillespie’s method �10,11�. These methods tend to be ones
that are applicable in the well-mixed limit, and they are gen-

erally population based, meaning that they explicitly track
populations of chemical species. The computational cost of
simulation is O�log2 M� per reaction event for efficient ki-
netic Monte Carlo �KMC� implementations �12,13�, where
M is the number of reactions. For integration of ordinary
differential equations �ODEs� derived from the law of mass
action, the cost is polynomial in the number of chemical
species and typically cubic for stiff ODEs. In addition to the
cost of simulation, the cost of generating a network from
rules, which is necessarily incurred either before or during
simulation �7,13,14�, can be prohibitively expensive. One
reason for the expense of network generation is that the prod-
uct�s� of a new reaction derived from a rule must be com-
pared with the chemical species stored in computer memory
to establish uniqueness, which requires graph isomorphism
checking if one uses graphs to track the connectivity of pro-
teins �15�. Another barrier to simulation is simply the amount
of memory required to store the chemical species and reac-
tions that form a large-scale network.

To address these computational limitations, Krivine,
Danos, and co-workers �16� have developed a particle-based
method that is suitable for simulating the kinetics of cellular
regulatory systems and other systems for which chemical
transformations can be defined in terms of reaction rules.
This method, which we will refer to as the DFFK method,
avoids the expense of network generation by directly using
rules to propagate a stochastic, discrete-event simulation in
which molecules undergo transformations sampled from
rule-defined reaction classes. The cost of the DFFK method
is a function of m, the number of rules, rather than M, the
number of reactions that can be generated by the rules.
Memory requirements are also independent of M. For m
�M, the computational cost of tracking the states of indi-
vidual molecules can be far less than that associated with
tracking the chemical species that these molecules �poten-
tially� populate. The DFFK method is closely related to vari-
ous other simulation methods that have been developed
mainly for application to nonbiological systems �17–22�. For
example, Schulze �18,21� has described a method for sto-
chastic simulation of crystal growth that is applicable when
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the number of distinct reaction rates in a system is less than
the number of reactions, which is exactly the scenario con-
sidered in a rule-based description of protein-protein interac-
tion kinetics. Another notable method is that of Slepoy et al.
�22�. Both of these methods have a computational cost that is
independent of M.

Here, we present an extension of the DFFK method,
which we call the rule-based KMC method. The method al-
lows for imposition of contextual constraints specified in a
rule on the rates of reactions defined by the rule. In other
words, the rate associated with a transformation defined by
a rule can be adjusted to account for the molecular context
of the transformation. This capability is important for mod-
eling aggregation, as will be seen below, and other phenom-
ena �23�.

To demonstrate the rule-based KMC method, we apply it
to simulate a rule-based model that characterizes the interac-
tion kinetics of a population of trivalent ligands with a popu-
lation of bivalent cell-surface receptors �Fig. 1�. This model,
which we will call the TLBR model, is relevant for studying
a number of experimental systems that have recently been
reported in the literature �24–27�. We have formulated the
TLBR model, a kinetic model, so that it corresponds to the
equilibrium model of Goldstein and Perelson �28�, which can
be used to characterize the equilibrium behavior of the
TLBR model in the continuum limit. The equilibrium model
predicts a sol-gel region, in which a macroscopic fraction of
the receptors are found in a single giant aggregate. As the
percolation transition is approached, and the mean size of
ligand-induced receptor aggregates increases, the number of
distinct reactions that can occur explodes, which prohibits
simulation of the reaction kinetics using population-based
methods near or in the sol-gel region. Simulation of the
TLBR model is a challenging and ideal test case for the
rule-based KMC method, because the number of reactions
that have a nonzero stationary flux can be tuned over a broad
range by adjusting the model parameters that control mean
aggregate size, which is limited only by the total receptor

number. Moreover, to obtain correct simulation results, one
requires the extension of the DFFK method that is presented
here.

We consider a well-mixed reaction compartment of vol-
ume V containing a set of molecules P= �P1 , . . . , PN�, which
we take to be proteins or other molecules comprised of a set
of components C= �C1 , . . . ,Cn�. Each component Ci has a
local state, denoted Si, that includes its type, binding part-
ner�s�, which �if any� are other components, and internal
state�s�, which may represent conformations or covalent
post-translational modifications. �A regulatory protein typi-
cally undergoes modifications, such as phosphorylation of
a tyrosine residue, that affect its function but not its essen-
tial identity.� The state of a protein is determined by its set
of components and their states. The state of the whole sys-
tem is given by P, C, and the set of component states
S= �S1 , . . . ,Sn�.

Molecules interact according to a set of reaction rules
R= �R1 , . . . ,Rm�. Precise specification of rules is possible us-
ing established syntactic and semantic conventions, such as �
calculus �30�, BNGL �15,29�, or �bio calculus �31�. Here, we
adopt functional definitions that do not depend on the spe-
cific details of these conventions. A rule Ri defines necessary
local and global features of Mi reactants, a transformation �of
molecularity Mi� that changes the state of Ni types of com-
ponents, and a rate law ri from which the maximum cumu-
lative rate of all reactions implied by the rule can be deter-
mined. The local features specified in a rule provide criteria
for selecting components that can potentially react based on
the individual properties of reactants �e.g., the states of com-
ponents in a molecule�, whereas the global features specified
in a rule, which are optional, provide criteria for adjusting
the rate at which selected components react based on the
joint properties of reactants �e.g., the connectivity of two
molecules�. For evaluation of rate laws, each rule Ri is asso-
ciated with Ni sets of reactive components, denoted Xij for
j=1, . . . ,Ni. Components in Xij are all of the same type and
each has properties consistent with local features specified in
rule Ri. A simple example of a rate law is that for an elemen-
tary bimolecular association reaction in which two comple-
mentary components bond �Mi=Ni=2�: ri=vi� j=1

Mi �Xij�,
where �Xij� denotes the number of components in Xij and vi
represents the maximum rate at which a pair of components
in Xi1�Xi2 undergoes transformation according to Ri. We
note that some of the pairs in Xi1�Xi2 may react at lower or
even zero rate depending on the global features specified in
the rule, which essentially provide rule application condi-
tions. As explained below, by taking advantage of the dis-
tinction between local and global features, we can sample a
bimolecular or higher-order class of reactions without form-
ing the set of combinations of reactive components.

Examples of reaction rules are illustrated in Fig. 1, which
presents the complete set of rules that define the TLBR
model. Rule R1 is associated with two sets of reactive com-
ponents: X11, the set of ligand binding sites on free ligand
molecules, and X12, the set of free receptor sites. Rule R2 is
associated with X21, the set of free ligand binding sites on
receptor-associated ligands, and X22, which is identical to
X12. Rule R3 is associated with X31, the set of bound ligand
binding sites, and X32, the set of bound receptor binding
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FIG. 1. TLBR model. �a� A ligand with three identical binding
sites and a mobile cell-surface receptor with two identical binding
sites. The ligand mediates crosslinking of receptors as shown. �b�
Rules representing capture of a freely diffusing ligand by a recep-
tor �R1�, ligand-mediated receptor crosslinking �R2�, and ligand-
receptor dissociation �R3�. Parameters of the rate laws asso-
ciated with these rules are single-site rate constants: k+1, k+2,
and koff, respectively. An empty �filled� circle indicates a free-
�bound� site, a line connecting circles indicates a bond, and
an empty box or wedge indicates a site that may be either free
or bound. In BNGL �29�, the rules are specified as follows: R1

is L�r ,r ,r�+R�l�→L�r!1 ,r ,r� .R�l!1�, R2 is L�r!+ ,r�+R�l�
→L�r!+ ,r!1� .R�l!1�, and R3 is L�r!1� .R�l!1�→L�r�+R�l�,
where l and r are used to represent binding sites of the receptor
�R� and ligand �L�, respectively.
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sites. A bijective mapping relates the elements of X31 and
X32. The rate laws associated with the three rules are r1
= �k+1 /V��X11� · �X12�, r2= �k+2 /V��X21� · �X22�, and r3=koff�X31�
=koff�X32�. In R1 and R2, the plus sign on the left-hand side of
the arrow indicates a molecularity of 2, which limits appli-
cation of R2 to cases where ligand and receptor binding sites
are unconnected. In other words, in the TLBR model, sites
within the same ligand-receptor complex are considered to
be nonreactive, which prevents the formation of cyclic ag-
gregates, consistent with simplifying assumptions of the
equilibrium version of the model �28�. �Extension of the
TLBR model to account for cyclic aggregates, such as those
suggested by the data of Whitesides and co-workers �25�, is
beyond the intended scope of this paper.� When large aggre-
gates form, the connectivity check needed to avoid formation
of cyclic aggregates can be expensive, as we discuss below.

We now describe a KMC algorithm for propagating a sys-
tem �P ,C ,S� under the influence of R. Initialization requires
that �P ,C ,S� be used to construct X, all sets of reactive com-
ponents associated with rules, and that X be used to calculate
the �maximum� rates given by r, the set of rate laws associ-
ated with rules. In describing the method used to determine
the time of the next event in a simulation and the rule to
apply, we follow Gillespie’s �direct� method �10,11� for con-
venience of presentation with the understanding that various
optimizations are possible �13,32�. A set of rules generates
events in a Poisson-distributed manner, just as a set of reac-
tions in a conventional stochastic simulation �33�, and thus,
essentially the same procedures can be used. The waiting
time, �, to the next event is given by

� = − �1/rtot�ln��1� , �1�

where rtot=� j=1
m rj and �1� �0,1� is a uniform deviate. Next a

rule RJ to apply is selected by finding the smallest integer J
that satisfies

�
j=1

J

rj � �2rtot, �2�

where �2� �0,1� is a second uniform deviate. The cost of
finding J in this way is O�m�, so for larger values of m one
may wish to use a more efficient procedure that reduces the
cost to O�log2 m� �34,35�. Next, the particular reactants to
which RJ is applied are determined by selecting one compo-
nent xk randomly from each set XJk for k� �1, . . . ,NJ�. The
next step extends the DFFK method. To determine whether
the selected components react, the application conditions of
RJ derived from the global features that it specifies are evalu-
ated to determine an adjusted rate of reaction, vJ�, which is
then compared against the maximal rate of reaction, vJ. If
vJ���3vJ, where �3� �0,1� is a uniform deviate, the trans-
formation specified by the rule is applied to the selected re-
actants. Otherwise, a null event occurs, i.e., a time step with-
out a reaction. Time is updated by setting t← t+� regardless
of whether a reaction occurs because the sampling rate rtot
includes nonreactive contributions. The maximum number of
random deviates that must be generated is NJ+3. We now
update �P ,C ,S� and X and recalculate cumulative rates r.

The simulation procedure outlined above is iterated until a
stopping criterion is satisfied.

The above algorithm is used as follows to simulate the
TLBR model. We specify parameters: The system volume V,
the rate constants k+1, k+2, and koff, and the total numbers of
ligands �NL� and receptors �NR�. If all ligands and receptors
are initially free, then all ligand sites �three per ligand� are
assigned to set X11 and all receptor sites �two per receptor�
are assigned to set X12 at time t=0. All other sets associated
with the rate laws of rules �e.g., X21, X31, and X32� are empty.
Recall that sites and molecules are tracked individually �i.e.,
they are each assigned a unique label�, and note that we can
use X12 in place of X22 whenever necessary. The values of r1,
r2, and r3 are calculated using the expressions given earlier.
At t=0, r1=6�k+1 /V�NLNR, r2=0, and r3=0. Equation �1� is
used to select a time step �. Equation �2� is used to select a
rule. If R1 is selected, a site x1 in X11 and a site x2 in X12 are
randomly selected and reassigned to X31 and X32, respec-
tively. The mapping between X31 and X32 is updated to link
these sites �and the molecules of which they are members� to
each other. Then, the other two sites on the ligand containing
x1 are assigned to X21. A similar process occurs if rule R3 is
selected. Rules R1 and R3 generate no null events because
pairs of sites that react according to these rules can be iden-
tified on the basis of their local features alone. In contrast, R2
generates null events because pairs of sites that react accord-
ing to R2 must be identified on the basis of both their local
and global features. If R2 is selected, a site x1 in X21 and a
site x2 in X22 �=X12� are randomly selected. At this point, the
mapping between X31 and X32 is used to determine if x1 and
x2 are indirectly connected. If not, x1 is reassigned to X31, x2
is reassigned to X32, and the mapping between X31 and X32 is
updated to link x1 and x2. If x1 and x2 are found to be con-
nected, no reaction �i.e., a null event� occurs. Finally, time is
incremented. The procedure described above is repeated, be-
ginning with the selection of a new time step. Execution ends
when the current time exceeds a specified value. By storing
the sets X11, X12, X21, X31, X32 and the mapping between the
sites of X31 and X32 in memory at desired time points, the
kinetics of any molecular property of interest can be deter-
mined after simulation is complete.

The computational cost of the above procedure without
the step of checking a rule application condition has been
carefully analyzed by Danos et al. �16�. The worst-case
bound on cost for an efficient implementation is proportional
to log2 m plus a constant cost that is a well-defined function
of certain properties of R, the set of rules under consider-
ation, but not the rate laws associated with rules. In contrast,
the cost of checking a rule application condition, as we will
see, can depend on properties of the chemical reaction net-
work implied by a set of rules, which in turn depend on the
rate laws associated with rules.

We now apply the rule-based KMC method to study the
TLBR model �Fig. 1�. The equilibrium receptor aggregate
distribution is controlled by two dimensionless parameters:
ctot=3k+1NL /koff, or equivalently c=3k+1L0 /koff, and 	
=k+2NR /koff �28�, where L0 is the number of free ligands at
equilibrium. The sol-gel coexistence phase predicted by the
equilibrium model forms a U-shaped region in the phase
diagram plotted as 	 versus ctot �or c�, and for a given value
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of ctot �or c�, aggregation increases monotonically with 	,
and the gel �i.e., infinite cluster of receptors� appears when 	
exceeds a critical value �28�. Rule-based KMC simulations
were used to recapitulate the entire phase diagram reported
in Fig. 7 of �28� �Fig. 2�. A variety of other equilibrium
properties were calculated and found to agree with the equi-
librium model after accounting for the effects of finite sys-
tem size �not shown�. These results confirm the validity of
the rule-based KMC method.

To demonstrate the efficiency of rule-based KMC relative
to that of population-based methods, which require reaction
network specification, we will focus on one population-based
method, the approach of on-the-fly simulation �7,13,14�. This
approach is a stochastic simulation method that is designed
to minimize the cost of generating a reaction network from
rules. Lazy evaluation of rules is used to generate only the
part of a network that is relevant for advancing a simulation.

On-the-fly simulation is not adequate for simulating
TLBR kinetics for many combinations of parameter values,
especially for parameter values that favor the formation of
large aggregates. As shown in Fig. 3�a�, the cost of on-the-fly
simulation becomes overwhelming at 	 values far below the
percolation transition because the number of species and re-
actions sampled during a simulation grows steeply with 	
�Fig. 3�b��. In contrast, the cost per reaction event of rule-
based KMC is constant nearly up to the critical value of 	.
Above the percolation transition, there is an increase in cost
per reaction event that coincides with the growth in the av-
erage size of the largest aggregate, which depends on the
number of molecules in the system. As shown in Fig. 3�c�,
there is a linear increase in the cost per reaction event with
system size �as measured by the number of receptors� above
the percolation transition. This increase can be attributed to
the cost of enforcing the prohibition against cyclic aggre-
gates, which requires checking the connectivity of two react-
ing sites, because when connectivity checks are omitted, the
cost per reaction event remains constant in the sol-gel region
�cf. solid and dotted lines in Fig. 3�c��. Connectivity checks

are performed by breadth-first traversals of graphs represent-
ing ligand-receptor aggregates, which depend linearly on the
number of vertices visited �36�.

To investigate the effect of null events on simulation ef-
ficiency, we modified the simulation procedure to minimize
the cost of null events. Null events arise from the step of
evaluating the application condition of a rule. The purpose of
this step, in general, is to determine if components selected
to potentially undergo a reaction on the basis of their local
properties possess the nonlocal properties required of true
reactants. For rule R2 of the TLBR model, the nonlocal prop-
erty that reactants must possess is a lack of connectivity:
Two components are not allowed to bond if they are part of
the same molecular complex. By appending information
about component membership in molecular complexes to lo-
cal component states, we can use this nonlocal state informa-
tion to determine connectivity when evaluating the applica-
tion condition of R2. The frequency of null events is
unchanged with this approach, which requires more pro-
gramming effort, but null events associated with R2 are less
expensive. As shown in Fig. 3�d�, use of auxiliary informa-
tion about component membership in complexes can speed
simulation by twofold to threefold under conditions when
large aggregates form, but scaling with system size is similar
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FIG. 2. Percolation transition between sol and sol-gel regions in
the space of c and 	. The curve marks the percolation transition
boundary according to the equilibrium continuum model of Gold-
stein and Perelson �28�. Using the rule-based KMC method, we
simulated the TLBR model to determine the steady-state value of
fg, the fraction of receptors in the gel phase �i.e., in the largest
receptor aggregate�, as a function of c and 	. At points marked by
dots, fg
0.05, whereas at points marked by circles, fg�0.05. To
adjust the values of c and 	, we varied k+1 and k+2 and held other
parameters constant at the following values: NR=3000, NL

=42 000, and koff=0.01 s−1.
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FIG. 3. Efficiency of simulation of the TLBR model. �a� Depen-
dence of CPU time per reaction event for rule-based KMC simula-
tion �solid line� vs on-the-fly simulation �7,13,14� �dashed line�. �b�
Effective network size as a function of 	. The solid and dashed
lines indicate the numbers of species populated and reactions fired,
respectively, in on-the-fly simulation. Calculations were performed
using BioNetGen �6,29�. �c� Dependence of CPU time per reaction
event on NR for 	=50 �solid line�, 	=0.1 �dashed line�, and 	
=50 without connectivity checks �dotted line�. For 	=50, the frac-
tion of KMC steps that result in null events is approximately 0.6 for
any value of NR. The fraction is essentially 0.0 for 	=0.1. Note that
the system is above �below� the percolation transition at 	=50 �	
=0.1�. �d� Importance of null events. The solid and dashed lines are
calculated using auxiliary nonlocal component state information to
minimize the cost of null events for 	=50 and 	=0.1, respectively.
The line broken in a dashed-dotted pattern and the dotted line are
calculated using a problem-specific rejection-free procedure for 	
=50 and 	=0.1, respectively. Additional simulation parameters: �a�,
�b� NR=300, NL=4200, and c=0.84; �c�, �d� NL=14NR and c
=0.84. The value of koff was held fixed at 0.01 s−1 in all simula-
tions. All reported results are based on simulation for 3000 s after
equilibration.
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to the case when the auxiliary information is not used. The
linear increase in cost with system size occurs because graph
traversal is required to update information about component
membership in complexes whenever a ligand and receptor
dissociate. These results suggest that linear scaling with sys-
tem size above the percolation transition is unavoidable and
that the inherent features of the TLBR model play a more
important role in determining the efficiency with which this
model can be simulated than the incorporation of null events
in the simulation procedure.

To further investigate the effect of null events on simula-
tion efficiency, we implemented a problem-specific rejection-
free method of simulation. �The source code is available
upon request.� In this method, we essentially form the direct
product of the sets X21 and X22, X2=X21�X22, and eliminate

the set of nonreactive pairs of components, X̄2, from X2, such

that r2 can be calculated as �k+2 /V��X2 \ X̄2�. As illustrated in
Fig. 3�d�, the cost of this approach scales linearly with sys-
tem size both above and below the percolation transition,
because the cost of finding a reactive pair of sites is propor-
tional to the number of potentially reactive sites. In contrast,
for the general-purpose procedure incorporating null events,
cost is constant below the percolation transition and scales
linearly with system size only above the percolation transi-
tion �Figs. 3�c� and 3�d��. These results suggest that null-
event sampling provides both a simple and efficient means to
evaluate and apply reaction rules that specify global features
of reactants.

Our interest in developing a method to simulate models
such as the TLBR model was prompted in part by the study
of Posner et al. �24�, who showed that a synthetic antigen
with three symmetrically arrayed hapten groups generates a
strong cellular secretory response through interaction with a
bivalent IgE antibody attached to cell-surface Fc�RI �the
high-affinity IgE receptor�, whereas the bivalent analog of
this antigen generates no secretory response. Further motiva-
tion was provided by earlier studies indicating that the size
of ligand-induced receptor aggregates as well as the kinetics
of ligand-receptor binding are important factors that influ-
ence Fc�RI-mediated cellular responses to antigen �37,38�.
The molecular mechanisms responsible for these effects,
which are largely uncharacterized, may perhaps be identified
with the help of models that capture the dynamics of ligand-
induced receptor aggregation and receptor-mediated signal-
ing events �4,39–41�. Analyses of such models require suit-
able simulation methods, which have not been available.

Simulation of the aggregation kinetics of the TLBR model
generates two predictions that could be relevant for under-
standing Fc�RI-mediated signaling, and cellular regulation in
general, and that can be tested using available reagents
�24–27�. First, as seen in Fig. 4�a�, small receptor aggregates
may form transiently before the formation of a giant aggre-
gate in the sol-gel region. This result may have biological
significance because small aggregates of Fc�RI �e.g., dimers
and trimers� stimulate cellular responses �42,43�, whereas
large aggregates of Fc�RI can be inhibitory �44�. Second, as
seen in Fig. 4�b�, two ligand doses that stimulate receptor
aggregation to the same extent at equilibrium can generate
qualitatively distinct time courses of receptor aggregation,

which may have functional consequences. For example, the
two doses might elicit different early cellular responses but
similar late cellular responses to the presence of a ligand. In
any case, a characterization of the different signaling events
triggered by the two doses could yield insights into temporal
aspects of cellular signal processing.

The time courses of Fig. 4�b� are qualitatively different
for the following reason. For the parameters used in simula-
tions, ligand capture is the rate-limiting step in ligand-
induced receptor aggregation �i.e., ligand capture is slower
than receptor crosslinking�. Furthermore, for the case of the
higher ligand dose, the amount of bound ligand passes
through an optimal level for receptor crosslinking during the
transient. When the kinetics of ligand capture are accelerated
without changing equilibrium, the overshoot seen in Fig.
4�b� disappears �not shown�. One can be convinced that re-
ceptor aggregation is maximal at an optimal ligand concen-
tration by considering the extremes of ligand and receptor
excess. When receptors are in large excess, ligands bind few
receptors, and as a result, there is little crosslinking, even
though each bound ligand tends to crosslink as many recep-
tors as possible. When ligands are in large excess, many
receptors are bound, but each receptor tends to be bound to
only a single ligand, because the pool of free ligand outcom-
petes the pool of bound ligand for free receptor sites. The
dependence of receptor aggregation on ligand concentration
has been thoroughly studied by Goldstein and Perelson �28�.
The results of this study can be used to select different ligand
doses that yield the same level of receptor aggregation at

FIG. 4. Kinetics of the TLBR model. �a� Fraction of receptors in
aggregates with 1, 3, 5, 7, or 9 receptors or in the largest aggregate
as a function of time in the sol-gel coexistence phase �NL=50 000
and c=2.7�. �b� Mean aggregate size as a function of time for the
same conditions as �a� �solid line� and at a lower ligand concentra-
tion �dashed line� that gives the same mean size at equilibrium
�NL=2000 and c=0.11�. Additional simulation parameters: NR

=3000, 	=16.8, and koff=0.01 s−1. Results are averaged over 40
simulation runs. Mean aggregate size is determined by 	S

=�i=2

NR ini /�i=2
NR ni, where ni is the number of aggregates containing i

receptors. Parameter values were chosen arbitrarily for the purpose
of demonstrating the rule-based KMC method, but they are ex-
pected to be somewhat reasonable for the case of a population of
ligands, each with three 2,4-dinitrophenol �DNP� hapten groups,
interacting with a population of monoclonal cell-surface anti-DNP
IgE antibodies, each with two antigen-combining sites �24,26�.
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equilibrium; The simulation method presented here can be
used to reveal the dose-dependent kinetics �Fig. 4�b��.

Large-scale reaction networks derived from rules strain
the capabilities of conventional simulation methods �5�,
which has hindered applications of the rule-based modeling
approach and motivated efforts to make simulations of rule-
based models more manageable, for example, by finding
model reductions �45–49�. Indeed, even generating a reac-
tion network from a set of rules can be an impractical pro-
cess �Fig. 5�. As indicated in Fig. 5, the partial network gen-
erated from the rules of the TLBR model �Fig. 1� after just
five rounds of rule application consists of hundreds of thou-
sands of chemical species and reactions. However, this par-
tial network is far from being large enough to account for the
aggregates considered in Fig. 4. The largest aggregate con-
sidered in the partial network contains just 16 receptors,
whereas aggregates considered in Fig. 4 contain about 20
receptors on average at equilibrium, with larger aggregates
forming during the transient for the case of higher ligand
concentration.

We have presented a method for simulating the kinetics of
reaction rules that implicitly define a large-scale reaction net-
work. Development of this method was inspired by STOCH-

SIM �50–52�, an early rule-based modeling software tool that
implements a particle-based stochastic simulation method
that has a cost independent of the number of reactions im-
plied by rules. However, this method relies on an inefficient
event sampling algorithm that produces a high fraction of
unsuccessful moves �null events� for stiff systems. A further
drawback of the STOCHSIM framework, which prevents
STOCHSIM from being used to simulate the TLBR model, is a
limited ability to represent the connectivity of molecular
complexes and to process rules that change molecular con-

nectivity �5�. The method presented here can be applied to
simulate more expressive rules, and it takes advantage of the
more efficient event sampling afforded by continuous time
Monte Carlo methods �53�a��. The method avoids null events
arising from differences in the time scales of reactions �stiff-
ness�, but uses sampling with the introduction of null events
to avoid forming the direct products of sets of potentially
reactive components, which would incur a linear cost per
reaction event with respect to system size for bimolecular
reactions �Fig. 3�d��. For simulation of the TLBR model,
below the percolation transition or without the connectivity
condition of R2, nearly constant scaling with system size is
achieved �Fig. 3�c��. Above the percolation transition, linear
scaling is observed because of the cost of enforcing the con-
nectivity condition.

The challenges of simulating the TLBR model arise from
the number of topologically distinct molecular complexes
that become possible, and indeed populated, as average re-
ceptor aggregate size grows �Fig. 3�b��. In our experience,
this type of problem commonly arises when attempting to
model cellular regulatory systems, and we have shown here
how such problems related to aggregation can be solved.
It should be noted that the DFFK method has also been used
to simulate the TLBR model as a test problem but without
consideration of the connectivity condition of R2 �53�b��. To
properly consider cell-surface interactions between ligand
and receptor, one must distinguish between intramolecular
and intermolecular binding, which is enabled by the step in
the procedure reported here that involves checking a rule
application condition. It should also be noted that related
methods, involving assumptions similar to those typically
made in a rule-based modeling approach, have recently been
used to model epitaxial growth �18,21�, self-assembly
�19,54,55�, and complex polymerization kinetics �20�, and
thus, the approach described here is relevant for studying
these types of physical systems as well as cellular regulatory
systems. Rule-based KMC should be a useful tool for simu-
lating a wide range of physical systems marked by combina-
torial complexity, i.e., large reaction network size resulting
from combinations of a relatively small number of molecular
interactions.

A potential application area of the rule-based KMC
method is colloidal ferrofluids that undergo a self-assembly
process and can form linear chains or isotropic aggregates
�56�. Another is associating polymers that play an important
role in biological tissues �57�. These polymers form thermor-
eversible gels containing disordered supramolecular aggre-
gates �58�. Finally, we note that various complex phase be-
haviors have been explained with the help of thermodynamic
models �58–60�. The rule-based KMC method could perhaps
be used to extend these results and study the dynamics of the
phase transitions in these systems.
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FIG. 5. Generation of the reaction network implied by the rules
of Fig. 1. Starting from two speed species �free ligand and free
receptor�, successive rounds of rule application generate new
chemical species and reactions. In the process of network genera-
tion, species are represented by graphs and rule application is com-
prised of graph rewriting operations �15�. The two seed species and
the four species generated in the first two rounds of rule application
are illustrated using the conventions of Fig. 1. White bars indicate
the number of species in the partially generated network at each
step in the process of network generation. Black bars indicate the
number of reactions. Indicated at top is the total CPU time required
to perform each of the first four rounds of rule application using
BioNetGen �6,29� running on a desktop workstation. CPU time is
not reported for the fifth round of rule application, which was per-
formed over the course of several days.
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